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Abstract
A new fossil leaf species, Liquidambar bella (Altingiaceae), is described from the lower part of the Eocene Huangniuling 
Formation, Maoming Basin, South China. Suprabasal venation in the fossil lobed Liquidambar leaves is reported for the 
first time. The new species provides additional palaeobotanical evidence on the morphological variability of this genus sup-
porting the idea of combining the genera Liquidambar, Semiliquidambar and Altingia into the single genus Liquidambar as 
proposed based on molecular markers.
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Introduction

Extant species of the genus Liquidambar L. (Altingiaceae) 
possess a disjunctive pan-continental natural distribution in 
eastern and western Asia, Europe and North and Central 
America (e.g., Wen 1998, 1999). Study of related fossil taxa, 
which can provide evidence about the diversification and 
evolutionary history of the genus, are therefore of particular 
interest. Fossils of Altingiaceae have been reported from the 
Cretaceous, Paleogene and Neogene of Asia, Europe and 
North America. The earliest fossil record of reproductive 
structures similar to those typical of this family is known 
from the upper Turonian (Zhou et al. 2001). Permineralized 
female reproductive structures unequivocally assigned to 
Liquidambar were described from the Miocene (Pigg et al. 
2004). The first appearance of the Liquidambar foliar mor-
phological type (Maslova 1995), wood of the Altingiaceae 

type (Melchior 1998; Wheeler et al. 2010) and Liquidam-
bar pollen grains (Graham 1965; Kuprianova 1960; Muller 
1981) are dated as Paleocene. Liquidambar-type leaves are 
well represented in the Cenozoic of Asia (e.g., Dong et al. 
2018; Endo and Morita 1932; Huzioka 1972; Huzioka and 
Uemura 1979; Maslova 1995, 2003; Maslova et al. 2015; 
Onoe 1974; Ozaki 1991; Suzuki 1961; Uemura 1983), 
Europe (e.g., Ferguson 1971, 1989; Koch et al. 1973; Mar-
tinetto 1998; Worobiec et al. 2012), and North America 
(e.g., Brown 1933; Knowlton 1902; MacGinitie 1941; Smi-
ley et al. 1975; Stults and Axsmith 2011; Wolfe and Tanai 
1980).

In China, several fossil occurrences of Liquidambar have 
been recognized based on leaves and/or reproductive struc-
tures: Eocene L. maomingensis N. Maslova, Kodrul, Song et 
Jin from the Huangniuling Formation, Guangdong Province 
(Maslova et al. 2015) and two Miocene species L. miosinica 
Hu et Chaney from the Shanwang Formation in Shandong 
Province (Hu and Chaney 1940) and the Shengxian Forma-
tion in Zhejiang Province (Xiao et al. 2011, 2013, 2015) as 
well as L. fujianensis J.L. Dong et B.N. Sun from the Fotan 
Group in Fujian Province (Dong et al. 2018). Apart from 
these, several Eocene fossil leaves have been ascribed to 
genus level only (Dalianhe Formation, Heilongjiang Prov-
ince, He and Tao 1997; Huadian flora, Jilin Province; Man-
chester et al. 2005).

Taxonomic revision of the modern Liquidambar (Ickert-
Bond and Wen 2013), adopting a broad circumscription of 
the genus and subsuming the previously recognized genera 
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Altingia Noronha and Semiliquidambar H.-T. Chang, shows 
that the genus includes 15 species, 11 of which grow in 
China. They are: L. acalycina H. T. Chang (Anhui, Guang-
dong, Guangxi, Guizhou, Hubei, Hunan, Jiangsu, Jiangxi, 
Sichuan and Zhejiang provinces), L. caudata (H. T. Chang) 
Ickert-Bond et J. Wen (Fujian and Zhejiang provinces), L. 
chinensis Champ. (Guangdong, Guangxi, Guizhou, Hainan 
provinces and Hong Kong), L. chingii (Metcalf) Ickert-
Bond et J. Wen (Fujian, Guangdong, Guangxi, Guizhou 
and Jiangxi provinces), L. excelsa (Noronha) Oken (Yun-
nan Province), L. formosana Hance (Anhui, Chongqing, 
Fujian, Gansu, Guangdong, Guangxi, Guizhou, Hainan, 
Hunan, Hubei, Jiangsu, Jiangxi, Shanxi, Sichuan, Zhejiang 
provinces, Taiwan and Hong Kong), L. gracilipes (Hemsl.) 
Ickert-Bond et J. Wen (Fujian, Guangdong, Zhejiang prov-
inces and Hong Kong), L. multinervis (Cheng) Ickert-Bond 
et J. Wen (Guizhou Province), L. obovata (Merrill et Chun) 
Ickert-Bond et J. Wen (Hainan Province), L. siamensis 
(Craib) Ickert-Bond et J. Wen (Guangdong and Yunnan 
provinces), L. yunnanensis (Rehder et Wilson) Ickert-Bond 
et J. Wen (Yunnan Province) (Ickert-Bond and Wen 2013). 
Hence, China should be the place where the maximal num-
ber of naturally growing representatives of the Liquidambar 
occur today.

Here we introduce new species of Liquidambar from the 
Eocene Huangniuling Formation (Maoming Basin, Guang-
dong Province) with brief discussion on its palaeoecology 
and habitat conditions. These fossils are from stratigraphi-
cally lower beds than the previously described species, L. 
maomingensis which also occurs in the Huangniuling For-
mation. We demonstrate similarities in leaf form of the new 
species to the species of the former genus Semiliquidambar. 

New finds of fossil Liquidambar species in China are there-
fore of an exceptional importance for a reconstructing the 
phylogeny of the genus, particularly in view of recent taxo-
nomic changes (Ickert-Bond and Wen 2013).

Materials and methods

The plant fossils examined were collected in the Jintang 
opencast mine (21°42′50″N, 110°52′35″E) of the Maoming 
Basin located northwest of Maoming City in southwestern 
Guangdong Province, China (Fig. 1). The stratigraphic suc-
cession of this locality is composed of the Youganwo and 
Huangniuling formations. The Youganwo Formation con-
sists of terrigenous coal-bearing deposits in its lower part 
and oil shales in the upper part. The overlying Huangniul-
ing Formation is composed mainly of fluvial sandstones, 
siltstones, and conglomerates with extended lenses of mud-
stones. Details of the Jintang opencast mine section are 
given in Aleksandrova et al. (2015). The upper part of the 
Youganwo Formation has been dated as late Eocene on the 
basis of the vertebrate fossils (Averianov et al. 2017; Jin 
2008). In a recent palynological study the Youganwo and 
Huangniuling formations are considered to be Lutetian-Bar-
tonian and Priabonian in age, respectively (Aleksandrova 
et al. 2015). Therefore, the new species of Liquidambar is 
supposed to be of a late Eocene age.

About 145 fossil leaf impressions of the new species 
were recovered from a lens of mudstone in the lower part 
of the Huangniuling Formation (locality MMJ2-2) which 
is approximately 20  m below the occurrence of previ-
ously reported Liquidambar maomingensis from the Upper 

Fig. 1   Outline map showing the 
fossil locality
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Huangniuling flora (Maslova et al. 2015). Plant megafossil 
assemblage of the Lower Huangniuling flora contains a few 
taxa of conifers (Pinaceae, Podocarpaceae) but is dominated 
by angiosperms of the Lauraceae, Fagaceae, Hamameli-
daceae, Altingiaceae, Myrtaceae, Juglandaceae, Aceraceae, 
Dipterocarpaceae, Rhamnaceae, Fabaceae, and Celastraceae 
families. Fagaceae, along with Altingiaceae, are the most 
common components of this flora (Spicer et al. 2016, 2017).

The specimens are housed at the Museum of Biology 
of Sun Yat-sen University, Guangzhou, China. Images of 
the leaves were taken using digital cameras: an Olympus 
E-500 and a Panasonic GX7 with a Leica DG MacroElmarit 
1:2.8/45 mm macro lens. For the leaf descriptions, we used 
terms from the Manual of Leaf Architecture (Ellis et al. 
2009). The length to width (L/W) ratio of the lamina was 
calculated using the maximum lamina length and width. The 
L/W ratio for incompletely preserved leaves was calculated 
using the reconstructed lamina. Biotic damage types on the 
Liquidambar leaves were considered using the “Guide to 
Insect (and Other) Damage Types on Compressed Fossil 
Plants” (Labandeira et al. 2007).

Comparative material of extant Liquidambar caudata 
was obtained from the South China Botanical Garden, 
Guangzhou.

Systematics

Family: Altingiaceae Horan. 1841
Genus: Liquidambar L. 1753
Species: Liquidambar bella N. Maslova et Kodrul, sp. 

nov.
Holotype: MMJ2-2-161a-1, MMJ2-2-161b-1, designated 

here, a leaf part and counterpart (Fig. 2d, g).
Locality: northwest of Maoming City, southwestern 

Guangdong, Maoming Basin, China.
Geological horizon and age: lower part of the Huangniul-

ing Formation, late Eocene.
Etymology: from bellus (lat.)—beautiful.
Repository: The Museum of Biology, Sun Yat-sen Uni-

versity, Guangzhou, P. R. China.

Diagnosis

Leaves simple, palmately three-lobed. Lamina symmetric 
or asymmetric with medial asymmetry and base asymme-
try in insertion and/or width. Leaves serrate from the base. 
Teeth regularly spaced, small, concave/retroflexed, with 
more prominent basal side, sinus shape rounded, tooth apex 
glandular. Apices of lateral lobes directed upwards or hori-
zontally; apex angle of lobes acute, apex shape straight or 
acuminate. Base angle of lamina obtuse or rarely acute, base 
shape rounded or truncate, rarely slightly cordate. Venation 

suprabasal or basal actinodromous, with three primary 
veins; lateral primary veins straight or curved, extending 
outward or upward, often diverging from midvein subop-
positely at various angles. Secondaries up to 6–10 pairs, 
alternate to subopposite, often irregular, semicraspedodro-
mous or festooned semicraspedodromous, arching upward 
near the margin; branches from loops terminating in teeth; 
intersecondaries weak. Tertiary veins alternate percurrent 
to mixed opposite–alternate percurrent. Fourth order veins 
alternate percurrent.

Description

Leaves are simple, palmately three-lobed, with petioles. The 
longest preserved fragment of petiole is 20 mm. Leaves are 
symmetric or asymmetric with different depths of sinuses 
between the lobes (Figs. 2c, 4e, f) and medial asymmetry 
(Figs. 3a, 4e, f). Laminar bases are also symmetrical or 
asymmetrical in insertion and/or width (Figs. 3a, d, 4g). 
Insertion points of lamina base on either side of the petiole 
are occasionally separated by 1–2 mm (Figs. 3a, b, 4g). The 
lamina length varies from 37 to 80 mm, lamina width—from 
19 to 140 mm. The length of the central lobe varies from 
15 to 50 mm, width—from 10 to 28 mm. The shape of the 
central lobe is triangular (Figs. 2h, 4a, b, d, h) or frequently 
narrowly triangular (Figs. 2a–e, 3a, 4c), with nearly paral-
lel margins at the lobe base (Figs. 2a, 3a, 4c) or narrowing 
towards the base (Figs. 2c, d, 3f). Lobe apices are acute 
(Figs. 3g, 4d, h) and frequently strongly acuminate (Figs. 2a, 
c, d, 4a, b). In some leaves lateral lobes extend obliquely 
upwards (Figs. 2a–e, 3a, d, g, 4c–h), reaching the length of 
the central lobe (Figs. 2c, d, 4d, g). In other leaves the lateral 
lobes extend obliquely upward and then curve to the hori-
zontal direction (Fig. 3a, b). Length/width (L/W) ratio of the 
lamina varies from 0.60 to 2.07 (1.15 in average). Leaf base 
is rounded (Figs. 2a–e, g, 3d, g, 4c–h) or truncate (Figs. 2f, 
3b, c), sometimes slightly cordate (Fig. 3e, f). Leaf margin 
is serrate from the leaf base (Fig. 2a–h, 3a–g, 4c–h). Mar-
ginal teeth vary in shape and size (Fig. 5a, b, d, e). Teeth are 
regularly spaced, small, appressed, concave/retroflexed, with 
more prominent basal side. Tooth apices are glandular or 
sometimes without any pronounced glands (Fig. 2a, 3a, c, e, 
g,). Some larger teeth are beak-shaped (Figs. 2b, e, 4a, b, 5e). 
Sinuses between teeth are rounded. Venation is suprabasal or 
basal actinodromous, with three primaries. The midvein is 
straight. Lateral primary veins are equal in their thicknesses 
to the midvein, suboppositely diverging from the midvein at 
the angle between 20° and 50° (usually 40°) (Fig. 2f, 3a–d, 
4e, f–h). Frequently they are slightly arch-shaped, curved 
outward or upward. More rarely the lateral primary veins 
are straight over the most part of their length, exceeding the 
length of a half of the lamina length, sometimes reaching 
the length of the central lobe (Fig. 2d). Secondary veins are 
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thin, consisting of 6–10 pairs, alternate to subopposite, often 
irregular, forming a series of loops along the leaf margin. 
Short branches diverge from the last order loops and termi-
nate in the marginal teeth (festooned semicraspedodromous 
venation) (Fig. 2a, b, 4a, b, f, 5a, b, d). Intersecondary veins 
are weak (Fig. 5a). Tertiary veins are weakly percurrent, 
sinuous or random reticulate (Figs. 2a, b, 3g, 4a, b, f, 5a, c, 
d). Higher order venation is represented by a net consisting 
of square, rectangular and polygonal cells (Fig. 5a–d, f). 
Freely ending veinlets are mostly two branched (Fig. 5b, c).

Discussion

Morphological comparison

Liquidambar bella differs from all previously described fos-
sil species of Liquidambar, first of all, in having leaves with 
suprabasal venation. Such suprabasal venation is known in 
extant species of Liquidambar chingii (previously attributed 
to Semiliquidambar cathayensis H. T. Chang) and L. cau-
data (previously belonged to Semiliquidambar caudata H. 
T. Chang) (Fig. 6). All other Liquidambar species with lobed 
laminae, both extant and fossil, have a basal origin of the 
lateral primary veins.

Three-lobed leaves of the recently described L. maomin-
gensis from the Eocene of South China (Maslova et al. 2015) 
and L. fujianensis from the middle Miocene of Southeast-
ern China (Dong et al. 2018) are most similar to the new 
species. L. maomingensis, however, is characterised by dis-
playing a higher variability of leaf form: the species pos-
sesses three-lobed leaves together with forms with addi-
tional small lobes and even unlobed morphotypes. Apart 
from having three-lobed leaves with suprabasal venation, the 
new species differs from L. maomingensis in having smaller 
laminae: their length vary from 37 to 80 mm in L. bella 
and from 46 to 125 mm in L. maomingensis, their width 
– from 19 to 140 mm in L. bella and from 45 to 150 mm 

in L. maomingensis. Also, the new species has smaller 
central lobes: in L. bella they are 15–50 mm in length and 
10–28 mm in width, while in L. maomingensis – 22–75 mm 
in length and 14–35 mm in width. The average L/W ratio 
is higher in the new species (1.15) than in L. maomingensis 
(0.86), which means that in L. bella, unlike L. maomingen-
sis, leaves where the length exceeds the width predominate. 
Other distinctive features of the new species are asymme-
try of the lamina and leaf base, as well as a variable angle 
between the midvein and lateral primary veins.

A variable lamina shape is also a characteristic feature 
of L. fujianensis: three-lobed leaves predominate, but five-
lobed and unlobed leaves are also present. Three-lobed 
leaves of this species differ from L. bella leaves in display-
ing a more variable angle between the lateral primary veins 
and the midvein. Moreover, the lateral lobes in L. fujianensis 
occupy a lower position, whereas in L. bella they extend 
upwards reaching the upper half of the lamina and some-
times even the apex of the central lobe. Besides, in L. fuji-
anensis the lateral primary veins always diverge from the 
midvein basally. Unfortunately, Dong et al. (2018) did not 
provide measurements of this species, which makes com-
parison with L. bella difficult.

Sun and shade leaves of Liquidambar bella

Recently, we released a study of morphological and epider-
mal character variability for distinguishing shade and sun 
leaves in two extant species of Liquidambar with different 
lamina types, unlobed with pinnate venation in L. chinen-
sis and palmately lobate with actinodromous venation in L. 
formosana (Maslova et al. 2018). We focused on those leaf 
characters that are often available for study in fossil mate-
rial. Such features include L/W ratio, the degree of devel-
opment of venation networks, tooth size and shape, size of 
epidermal ordinary cells, and their anticlinal wall outlines. 
Shade leaves are narrower in comparison to sun leaves, hav-
ing a finer leaf texture, less pronounced venation and smaller 
marginal teeth, whereas sun leaves in general have more 
extended lobe tips, a coarser texture, a prominent venation 
and larger teeth. Shade leaves differ from sun leaves in pos-
sessing sinuous anticlinal walls of ordinary epidermal cells 
(especially on the upper lamina surface) and relatively larger 
ordinary cells on both lamina surfaces. Earlier, by analogy 
with leaf morphology of extant L. formosana, fossil leaves 
of L. maomingensis from the Eocene of southern China, pre-
served only as impressions, were categorized into sun and 
shade morphotypes (Maslova et al. 2015).

Our collection of L. bella fossil leaves is also representa-
tive enough to distinguish sun and shade morphotypes. 
Leaves with a minimal L/W ratio of 0.60 are characterised 
by more prominent secondary and tertiary veins, more 
dissected laminae with deeper sinuses between lobes and 

Fig. 2   Three-lobed leaves of Liquidambar bella sp. nov. from the 
lower part of the Eocene Huangniuling Formation, Maoming Basin, 
Jintang opencast mine. Fossil leaves with lateral lobes oriented 
obliquely upward, reaching more than two-thirds of the lamina length 
(a–e). a Leaf with narrowly triangular lobes and acuminate apex of 
the central lobe. MMJ2-2-037a-1. b, e Leaf showing large marginal 
teeth with glandular apex. Note the margin feeding with a distinct 
reaction rim (DT14), MMJ2-2-114a, MMJ2-2-114b, part and coun-
terpart, respectively (b, Maslova et al. 2018, Fig. 13D). c Leaf show-
ing skeletonized areas with poorly developed reaction rims (DT16). 
MMJ2-2-011. d, g Holotype, part and counterpart, MMJ2-2-161b-1, 
MMJ2-2-161a-1, respectively. Note suprabasal actinodromous vena-
tion and on the leaf in d margin feeding (DT13) and skeletonization 
(DT16). f Truncate leaf base showing lateral primary veins, diverging 
from the midvein suboppositely. MMJ2-2-354-1. h Leaf with trian-
gular central lobe and basal actinodromous venation. MMJ2-2-359. 
Scale bars are 10 mm in a–e, h, 5 mm in f, g 

◂
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relatively larger marginal teeth (Figs. 2b, e, 3a). This leaf 
morphotype we interpret to have been sun leaves. On the 
other hand, leaves with a maximal L/W ratio of 2.07 possess 
poorly developed and less prominent venation, less dissected 
laminae and small appressed teeth (Figs. 3g, 4e) and are 
likely to have been shade leaves. It should be noted that the 
complete sets of the features mentioned above are character-
istic only for typical sun (growing in the crown periphery) 
and shade (located in the very inner parts of a tree crown) 
leaf morphotypes. Between these extreme morphotypes 
there are transitional forms belonging to leaves growing in 
the middle part of a tree crown. Among these transitional 
forms leaf morphotypes in which leaf length exceeds leaf 
width predominate; this feature also distinguishes the new 
species from L. maomingensis.

Fossil Liquidambar species in Asia

Most Asian fossil Liquidambar species described in the mid-
dle of the last century used very limited fossil leaf mate-
rial and without any analysis of intraspecific variability. We 
therefore believe that a large number of these fossil species 
will require reappraisal of the diagnostic value of individual 
morphological features. Tanai (1967, 1970, 1976) attempted 
to merge several Asian species into one L. miosinica due to 
their small differences and general similarity with the extant 
L. formosana. Liquidambar miosinica, which includes both 
three-lobed and five-lobed leaves, has been described from 
the Paleogene (Eocene) and Neogene of Japan (e.g., Matsuo 
1970; Ozaki 1991; Tanai 1967, 1970, 1976), China (e.g., Hu 
and Chaney 1940), Korea (e.g., Ablaev et al. 1990; Huzioka 
1972) and the Russian Far East (e.g., Ablaev 1974, 1978; 
Maslova 1995). The new species differs from L. miosinica 
in lacking five-lobed leaves and in having forms with supra-
basal venation.

Matsuo (1970) attributed leaves from the Oligocene 
Sakito Flora (Japan) to the extant species L. formosana 
because he did not find any macromorphological differences 
between their leaves. We, however, believe that it is incor-
rect to name fossil leaves as an extant species if there is 

no information on reproductive structures belonging to the 
same plant as the fossil leaves. Also, in the Cenozoic floras 
of Japan the following species were identified: L. cordata 
(K. Suzuki) Uemura (Uemura 1983), L. protoformosana 
Endo var. eocenica Endo (Endo 1968), L. protopalmata (K. 
Suzuki) Uemura (Uemura 1983), L. yabei (Morita) Huzioka 
(Huzioka 1974). Among them, L. protopalmata, unlike all 
other species including L. bella, has a large number of lobes 
(5–7), and L. yabei possesses a strongly dissected lamina and 
narrow lobes with almost parallel margins. All other fea-
tures (a lobed lamina, basal type of the lateral primary veins 
divergence, semicraspedodromous venation, and marginal 
teeth morphology) are common for all previously described 
Asian fossil species and fit the variability of the extant L. 
formosana.

Palaeoecological and palaeoclimatic conditions

Natural populations of extant Liquidambar species exist in 
humid warm temperate, subtropical and tropical climates 
and are mainly distributed in middle-low latitude areas. They 
are a common component of broad-leaved evergreen forests 
and grow at an elevation up to 1500 m.

Fossil Liquidambar species are inferred to have inhabited 
areas with warm and wet climatic conditions as well (Dong 
et al. 2018; Maslova et al. 2015). The use of the new Liq-
uidambar species alone for the palaeoclimate reconstruction 
is limited. Earlier, we estimated the palaeoclimate variables 
using the CLAMP (Climate Leaf Analysis Multivariate Pro-
gram: Wolfe 1993; Yang et al. 2011; http://clamp​.ibcas​.ac.
cn/) technique based on 46 woody dicot leaf morphotypes 
(species) of the Lower Huangniuling flora (Spicer et al. 
2016, 2017). Our data showed that this flora experienced a 
humid subtropical climate with hot summers, warm winters 
and relatively low seasonal rainfall variations (climate Cfa 
according to the Köppen’s classification of global climates: 
Köppen 1936; Peel et al. 2007).

A progressive warming and increase in climate season-
ality over the middle–late Eocene interval in South China 
(Spicer et al. 2017) could influence significantly interactions 
within plants and other organisms and affect the diversity 
and frequency of damage types (DTs) in the palaeofloras. A 
recent study (Kodrul et al. 2018) of the DTs in the Eocene 
Liquidambar taxa from the Maoming and Changchang 
basins revealed that most of them could be assigned to 
arthropod functional feeding groups. The fossil leaves of 
these taxa exhibit mostly external foliage feeding, which 
includes margin feeding, skeletonization, and hole feeding. 
Skeletonization and margin feeding are two dominating 
types of arthropod damage in L. bella. Skeletonized areas 
are usually exemplified by large or small polygonal patches 
of completely or partly removed interveinal tissue, with or 
without reaction rims (Figs. 2c, d, 4e, g, 5d). Margin feeding 

Fig. 3   Fossil leaves of Liquidambar bella sp. nov. from the lower 
part of the Eocene Huangniuling Formation, Maoming Basin, Jintang 
opencast mine. a Leaf showing asymmetrical width of lamina base 
and nearly parallel lobe edges at the base. MMJ2-2-135-1. Leaf bases 
showing lateral primary veins, diverging from the midvein suboppo-
sitely (b–d). b Truncate leaf base with slightly asymmetrical lamina 
insertion. MMJ2-2-027-2. c Truncate leaf base. MMJ2-2-221-1. d 
Rounded leaf base showing asymmetrical width. MMJ2-2-333-4. e 
Leaf showing slightly cordate base and suprabasal venation with lat-
eral veins diverging suboppositely. MMJ-2-2-031. f Leaf with slightly 
cordate base and lateral lobes arching downwards. MMJ2-2-391-1. 
g Leaf with small lateral lobes and acuminate apex. MMJ2-2-029a 
(Maslova et al. 2018, Fig. 13B). Scale bars are 10 mm in a, c, e–g, 
5 mm in b, d 

◂
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differs in morphology and size of leaf margin excisions, and 
could be caused by different arthropods (Figs. 2b, d, e, 3b, d, 
4b). The proportion of arthropod endophytic feeding damage 
types (galls) is low (Fig. 5g, i). Only three fossil leaves of 
L. bella exhibit damage traces resembling a consequence of 
fungal activity (Fig. 5b, f, h).

Several recent studies of plant-insect interaction (Endara 
and Coley 2011; Lemoine et al. 2017) revealed a high her-
bivory level on early successional, fast-growing pioneer spe-
cies that correspond well with the data obtained from our 
study. Some extant species of Liquidambar are generally 
dominants or companion species during early successional 
stages (Brewer 2001; Chen et al. 2017). Fossil Liquidambar 
species from the Maoming Basin may have possessed simi-
lar life-history strategies with the extant ones because early 
successional riparian forests are assumed to be widespread 
on the nutrient-rich alluvial soils during deposition of the 
Huangniuling Formation (Kodrul et al. 2018). Significant 
damages by leaf-chewing insects on both L. bella and L. 
maomingensis may support this assumption.

The systematic importance of Liquidambar bella

A recent study (Ickert-Bond and Wen 2013) significantly 
changed the classification of species within the Altingiaceae, 
by sinking Semiliquidambar and Altingia into Liquidambar. 
Before this publication, three extant genera Liquidambar, 
Altingia and Semiliquidambar were supposed to be the 
members of this family (e.g., Chase et al. 1993; Ickert-
Bond et al. 2005, 2007; Li et al. 1999; Takhtajan 2009) or 
the members of the subfamily Altingioideae belonging to 
family Hamamelidaceae (e.g., Endress 1989а, b; Endress 
and Igersheim 1999; Fang and Fan 1993; Hoey and Parks 
1994; Hufford and Crane 1989; Maslova 2010; Zhang and 
Lu 1995). Molecular-genetic study together with cladistic 
analysis of morphological features (Ickert-Bond et al. 2005, 
2007; Ickert-Bond and Wen 2006; Shi et al. 2001) allowed 
Ickert-Bond and Wen (2013) to merge these three genera 
into one with a priority generic name Liquidambar. Also, 

Ickert-Bond and Wen (2013) published a key for the species 
determination and taxonomic synopsis.

Morphological similarities and differences of the extant 
representatives of Altingiaceae are well-studied (e.g., Bogle 
1986; Ickert-Bond et al. 2005, 2007). The plants of this 
family commonly have capitate infructescences with bicar-
pellate polyspermous fruits with styles of different length 
divided by sclerenchymatous tissue, and capitate staminate 
inflorescences with tetrasporangiate stamens and polyporate 
pollen. The former genera Liquidambar, Altingia and Semi-
liquidambar were well-differentiated by leaf morphology: 
Liquidambar possesses only palmately-lobed leaves with 
3–7 lobes, Altingia—only unlobed leaves, and Semiliquid-
ambar—both palmately-lobed and unlobed leaves.

The new species L. bella helps elucidate the history of 
Altingiaceae. This species combines a mosaic of leaf fea-
tures characteristic of genera Liquidambar and former Semi-
liquidambar. Apart from having leaf morphology distinctive 
for these two taxa like lobed leaves, semicraspedodromous 
venation, intersecondary veins and characteristic marginal 
teeth, the new Liquidambar species possesses a suprabasal 
type of the lateral primary veins characteristic of former 
Semiliquidambar leaves only. At the same time the Semiliq-
uidambar lobed leaf morphotype differs from that of Liquid-
ambar in having less dissected laminae (Semiliquidambar 
leaves have small lobes without attenuate apices). The new 
species differs from former Semiliquidambar in having more 
dissected leaves and irregular suprabasal venation, as well 
as in the lack of unlobed laminae.

Earlier we examined the significance of fossil L. maomin-
gensis for the systematics of the genus (Maslova et al. 2015). 
We showed that polymorphic leaves of this species, lobed 
and unlobed morphotypes of which are similar to those pre-
viously ascribed to the Liquidambar, Altingia and Semiliq-
uidambar, and associated capitate infructescences similar to 
those of former Altingia, possibly belonged to a single plant 
species. Our study of two Eocene species from the Maoming 
Basin therefore provides palaeobotanical evidence for the 
merging of three extant genera Liquidambar, Altingia and 
Semiliquidambar into one.

In the geological past a group of polymorphic Liquidam-
bar species existed in South China. Although taxonomical 
diversity of the Liquidambar fossil species so far identified 
in this region is not considerable (L. miosinica, L. fujian-
ensis, L. maomingensis, and L. bella), significant variety of 
morphological characters of leaves and associated reproduc-
tive structures are recorded for these species. We hypoth-
esize that there was a center of Liquidambar speciation in 
South China during the Eocene. L. bella and L. maomin-
gensis probably gave rise to the extant species L. caudata 
which is widespread in China and L. formosana which is a 
typical resident of modern floras of Central and South China 
as well as several other regions in East Asia. A revision of 

Fig. 4   Fossil leaves of Liquidambar bella sp. nov. from the lower 
part of the Eocene Huangniuling Formation, Maoming Basin, Jintang 
opencast mine. a, b Leaves with triangular lobes and acuminate api-
ces. MMJ2-2-173b, MMJ2-2-342-3, respectively. c Small leaf show-
ing narrowly triangular lobes with nearly parallel lobe edges at the 
base. MMJ2-2-358. d Leaf showing triangular lobes with acute apices 
and shallow sinuses. MMJ2-2-378-2. e Leaf with asymmetrical lam-
ina and small lobes. Note the skeletonized areas with poorly devel-
oped reaction rims (DT16). MMJ2-2-045-3. f Leaf showing supra-
basal venation and different depth of the sinuses between the lobes. 
MMJ2-2-013-1. g Narrow leaf with lateral lobes oriented sharply 
upward, asymmetrical lamina basal width, and lateral veins diverging 
suboppositely. MMJ2-2-374-1. h Leaf showing triangular lobes with 
acute apices, suprabasal venation and suboppositely diverging lateral 
veins. MMJ2-2-028. Scale bars are 10 mm in a, b, d–h, 5 mm in c 

◂
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the leaf fossil species of Altingiaceae, including taxa from 
Asia, for revealing an evolutionary trends in leaf morphol-
ogy has been carried out by Lai et al. (2018). These authors 
also have suggested that southeast Asia is a diversity center 
of Altingiaceae species. Of note is that a molecular-genetic 
study of simple sequence repeats in individuals from geo-
graphically separated populations of the extant L. formosana 
in China (Sun et al. 2016) shows maximal genetic variability 
of this species located in southwestern China. Based on this, 
these authors speculated that southwestern China may be 

Fig. 5   Venation patterns and teeth characters of fossil leaves of Liquidambar 
bella sp. nov. from the lower part of the Eocene Huangniuling Formation, 
Maoming Basin, Jintang opencast mine. a Venation pattern of leaf lateral 
lobe. Note the relatively small teeth with nonspecific apices. MMJ2-2-030. b 
Detail of marginal venation and teeth characters of leaf lateral lobe. Note small 
rounded damage probably caused by fungi.  MMJ2-2-034a-1. c Detail of ter-
tiary and higher-order leaf venation. MMJ2-2-030. d Venation of leaf lateral 
lobe showing prominent marginal teeth with glandular apices. Note the skel-
etonized area with poorly developed reaction rims (DT16). MMJ2-2-032b-1. 
e Leaf lobes with large beak-shaped marginal teeth. MMJ2-2-114a.  f, h Pos-
sible fungal infection on the leaf surface. MMJ2-2-390-6, MMJ2-2-036b, 
respectively. g, i Galls positioned on the primary veins (DT33). MMJ2-2-023, 
MMJ2-2-361-1, respectively. Scale bars are 5 mm in a, e–i, 2 mm in b–d 

◂

Fig. 6   Leaves of extant species Liquidambar caudata (H. T. Chang) 
Ickert-Bond et J. Wen, South China Botanical Garden, Guangzhou 
(a–c). Note the lobed and unlobed leaves with suprabasal venation, 

suboppositely diverging lateral veins, and occasionally asymmetrical 
lamina basal insertion. Scale bar is 10 mm
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the centre of genetic diversity for this species. This radia-
tion might have been enhanced by a strong abiotic natural 
selection due to an existence of a mosaic of different topo-
graphic habitats and seasonal climate variations: in South 
China rainfall seasonality increased progressively achieving 
modern monsoon-like wet season/dry season precipitation 
ratios by the early Oligocene (Herman et al. 2017; Spicer 
2017; Spicer et al. 2017). We believe that future palaeobo-
tanical studies could provide us with valuable information 
on even greater diversity of the Eocene and Miocene species 
of the Altingiaceae, the adaptive radiation of which gave 
rise to high specific diversity within the Altingiaceae in the 
modern flora of China.
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